A NON-REMOVABLE SET FOR ANALYTIC FUNCTIONS SATISFYING A ZYGMUND CONDITION

BY

NGUYEN XUAN UY

1. Introduction

A complex-valued function f defined on the complex plane C satisfies a Lipschitz condition of order α , $0 < \alpha \le 1$, if there exists a constant C(f) such that

$$|f(z+h) - f(z)| \le C(f)|h|^{\alpha}$$

for all complex z and h. This condition is obviously stronger than

$$|f(z+h) + f(z-h) - 2f(z)| \le C(f)|h|^{\alpha}$$

which does not necessarily imply the continuity of f. When $\alpha = 1$, the latter condition is usually called the Zygmund condition. We shall denote the classes of bounded continuous functions which satisfy the above conditions respectively by Lip_{α} and Λ_{α} . If $0 < \alpha < 1$, it is well known (see [5, Chap. V, Section 4]) that Lip_{α} and Λ_{α} are identical but $\text{Lip}_{1} \subseteq \Lambda_{1}$.

We shall call a compact subset E of $\overline{\mathbf{C}}$, a removable set for analytic functions of class $\operatorname{Lip}_{\alpha}$, resp. Λ_{α} , provided that every function in $\operatorname{Lip}_{\alpha}$, resp. Λ_{α} , which is analytic in $\mathbf{C} \setminus E$ has analytic extension to the entire plane. Dolženko [1] proved that E is removable for analytic functions of class $\operatorname{Lip}_{\alpha}$, $0 < \alpha < 1$, if and only if E has $(1 + \alpha)$ -dimensional measure zero. In [6] we showed that this result is also true for the case $\alpha = 1$. Thus the removable sets for analytic functions of class Λ_1 must also have zero dx dy-measure.

In this paper we shall construct a compact set E of zero dx dy-measure and a probability Borel measure μ , supported on E, such that its Cauchy transform

$$\hat{\mu}(z) = \int \frac{d\mu(\zeta)}{\zeta - z}$$

belongs to Λ_1 . Since $\hat{\mu}(z) = -1/z + \cdots$ at ∞ , $\hat{\mu}$ cannot be entire.

© 1986 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received June 1, 1983.