Z_2 -GRADED ALGEBRAS

BY

IRVING KAPLANSKY¹

1. Introduction

This paper was inspired by [2]. Recast into the language of Lie superalgebras, rather than Lie algebra square roots, one of Mackey's results reads as follows. Let L be a Lie superalgebra with even part H and odd part N. Assume that N is two-dimensional, that H is three-dimensional, and that $N^2 = H$. Then either HN = 0 or L is the unique five-dimensional simple Lie superalgebra (the first of the orthosymplectic series). In Theorem 1 I exhibit a generalization. Any field of characteristic $\neq 2$ is admissible in Theorem 1.

I stubbornly sought to fit in characteristic 2 as well. But in characteristic 2 the notions of Lie algebra and Lie superalgebra coincide. So it was natural to make a parallel study for Lie algebras. The result was Theorem 2 in which, however, characteristic 3 was an unexpected exception.

The final section of the paper contains a number of additional remarks.

2. Lie superalgebras

Note that in all algebras the operation is being written simply as multiplication.

THEOREM 1. Let L = H + N be a Lie superalgebra with even part H and odd part N. Infinite-dimensionality is permitted and the base field can be any field of characteristic $\neq 2$. Assume that the multiplication $N \times N \rightarrow H$ is the symmetric tensor product, i.e., is as free as possible. (The mapping is not assumed to be onto.) Then there exists a unique alternate form (,) on N such that

(1)
$$xy.z = (y, z)x + (x, z)y$$

for all $x, y, z \in N$.

© 1991 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received November 14, 1988.

¹Work supported by a grant from the National Science Foundation through the Mathematical Sciences Research Institute.