ON THE SIZES OF THE SETS OF INVARIANT MEANS

ΒY

TIANXUAN MIAO¹

1. Introduction and notation

Let G be a locally compact group with a fixed Haar measure λ . If G is compact, we assume $\lambda(G) = 1$. Let $L^p(G)$ be the associated real Lebesgue spaces $(1 \le p \le \infty)$. For each $f \in L^{\infty}(G)$ and $x \in G$, ${}_x f \in L^{\infty}(G)$ is defined by ${}_x f(y) = f(xy), y \in G$. Let P denote the set of all $f \in L^1(G)$ with $f \ge 0$ and $||f||_1 = \int_G |f(x)| dx = 1$. A functional $m \in L^{\infty}(G)^*$ is called a mean if m(1) = 1 and $m(f) \ge 0$ for each $f \in L^{\infty}(G)$ with $f \ge 0$. We denote the set of all left invariant means on $L^{\infty}(G)$ by LIM, i.e. all the mean m with $m({}_x f) = m(f), (x \in G, f \in L^{\infty}(G))$. For $\varphi \in P$ and $f \in L^{\infty}(G), \varphi * f \in L^{\infty}(G)$ is defined by

$$\varphi * f(x) = \int_G \varphi(t) f(t^{-1}x) dt, \quad x \in G,$$

and the set of all topologically left invariant means, i.e. the mean m on $L^{\infty}(G)$ with $m(\varphi * f) = m(f)$ ($\varphi \in P$, $f \in L^{\infty}(G)$), is denoted by *TLIM*. For any set A, the cardinality of A is denoted by |A|.

Let CB(G) be the Banach space of continuous bounded functions on G in the supremum norm. We can define a left invariant mean on CB(G) as in the case of $L^{\infty}(G)$. We denote all left invariant means and all topologically left invariant means on CB(G) by LIM(CB(G)) and TLIM(CB(G)), respectively. When $LIM \neq \phi$, we say that G is amenable. It is well known that any topologically left invariant mean is left invariant and G is amenable if and only if one of the following conditions is true: (a) $TLIM \neq \phi$. (b) $LIM(CB(G)) \neq \phi$. (c) $TLIM(CB(G)) \neq \phi$. Also, if G is amenable as a discrete group, then G is amenable (see [9]).

The size of $LIM \sim TLIM$ was first studied by Granirer [7] and Rudin [18]. They showed independently that $LIM \sim TLIM \neq \phi$ if G is nondiscrete and

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 17, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 43A07.

¹This research was supported in part by the Killam Memorial Scholarship at the University of Alberta.