SIMPLICIAL CURRENTS¹

JOHAN L. DUPONT AND HENRIK JUST

0. Introduction

For a smooth manifold X, the deRham theorem provides a quasi-isomorphism from the complex $\Omega^*(X)$ of differential forms to the complex of (smooth) singular cochains on X. Furthermore (under this isomorphism) the wedge-product in $\Omega^*(X)$ induces the cup-product in cohomology; but $\Omega^*(X)$ has the advantage of being an associative, graded commutative algebra already on the chain level.

In the dual case the deRham theorem gives a quasi-isomorphism from the complex of (smooth) singular chains on X to the complex $\Omega_*(X)$ of compactly supported currents on X. (We use this non-standard notation rather than $\mathcal{D}'(X)$ or $\mathcal{D}'_*(X)$.) The dual of the wedge-product is a map

$$\wedge' \colon \Omega_*(X) \to \Omega_*(X) \hat{\otimes} \Omega_*(X)$$

(where $\hat{\otimes}$ denotes the completed, projective tensor-product), and this is in the appropriate sense an associative and graded commutative coproduct. Furthermore there is a commutative diagram

$$H(\Omega_{*}(X)) \xrightarrow{\wedge'} H(\Omega_{*}(X) \hat{\otimes} \Omega_{*}(X))$$

$$\| \qquad \uparrow^{\cong} \qquad (0.1)$$

$$H(\Omega_{*}(X)) \xrightarrow{\text{coproduct}} H(\Omega_{*}(X)) \otimes H(\Omega_{*}(X))$$

proving that \wedge' identifies with the usual coproduct in homology.

The deRham theorem has a natural and frequently used extension to the category of simplicial manifolds, i.e., simplicial objects in the differentiable category. Here the complex $\Omega^* ||X||$ of simplicial differential forms, as defined in [5], plays the role of the differential forms on a manifold. That is, $\Omega^* ||X||$ is an associative, graded commutative algebra, and the cohomology identifies with the cohomology algebra of the (fat) realization ||X|| (see Section 3 for the definitions).

The aim of the following is to introduce a complex $\Omega_* ||X||$ of *simplicial currents* on a simplicial manifold X, with properties similar to the complex of currents on

Received April 3, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 58A12, 58A25; Secondary 14F40, 55P62, 57P99.

¹Work supported in part by Statens Naturvidenskabelige Forskningsråd, Denmark and the Rosenbaum Foundation, U.S.A.

^{© 1997} by the Board of Trustees of the University of Illinois Manufactured in the United States of America