ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS¹

BY

Noboru Ito

Let Ω be the set of symbols $1, \dots, m + 1$. Let \mathfrak{G} be a doubly transitive permutation group on Ω in which no nontrivial permutation leaves three symbols fixed. Such a group \mathfrak{G} will be called a Zassenhaus group.

On the structure of Zassenhaus groups Feit [4] proved recently the following elegant theorem: Let \mathfrak{G} be a Zassenhaus group of degree m + 1, which contains no normal subgroup of order m + 1. Then m must be a power of a prime number: $m = p^{\mathfrak{e}}$. Let \mathfrak{M} be a Sylow p-subgroup of \mathfrak{G} , and let \mathfrak{M}' be the commutator subgroup of \mathfrak{M} . Then the index of \mathfrak{M}' in \mathfrak{M} must be smaller than $4q^2$, where q is the order of the subgroup \mathfrak{Q} , which consists of all the permutations leaving each of the symbols 1 and 2 fixed. Moreover if \mathfrak{M} is abelian, then $q \geq (m - 1)/2$.

Now the purpose of this paper is to prove the following.

THEOREM. If m is odd, then \mathfrak{M} must be abelian.

1. In the following \mathfrak{G} denotes always a Zassenhaus group of even degree m + 1, which contains no normal subgroup of order m + 1. Let Γ_i (i = 0, 1, 2) be the set of all the permutations in \mathfrak{G} , each of which fixes just *i* symbols of Ω . Then according to our assumptions on \mathfrak{G} we obtain the following decomposition of \mathfrak{G} into its mutually disjoint subsets: $\mathfrak{G} = \Gamma_0 + \Gamma_1 + \Gamma_2 + \{1\}$, where 1 is the identity element of \mathfrak{G} .

Since \emptyset is doubly transitive, \emptyset possesses an irreducible character **B**, whose values can be written as follows:

(1)
$$\mathbf{B}(X) = \begin{cases} m \text{ for } X = 1, \\ 1 \text{ for } X \in \Gamma_2, \\ 0 \text{ for } X \in \Gamma_1, \\ -1 \text{ for } X \in \Gamma_0. \end{cases}$$

2. Let \mathfrak{G}_1 be the subgroup of \mathfrak{G} , which consists of all the permutations leaving the symbol 1 fixed. Then we can choose an \mathfrak{M} in the theorem of Feit in the following way: \mathfrak{M} is a normal subgroup of \mathfrak{G}_1 and satisfies the conditions that $\mathfrak{G}_1 = \mathfrak{M}\mathfrak{Q}$ and $\mathfrak{M} \cap \mathfrak{Q} = 1$. Now we assume that

(2.1) \mathfrak{M} is not abelian.

Therefore the purpose of our proof is to derive a contradiction from this

Received April 5, 1961.

¹ This research was supported in part by the United States Air Force.