THE RADIUS OF UNIVALENCE OF CERTAIN ENTIRE FUNCTIONS

BY

HERBERT S. WILF

It was shown in [1] (see also [5]) that the radius of univalence, $R_U(\nu)$, of the function $z^{1-\nu}J_{\nu}(z)$, where $J_{\nu}(z)$ is the usual Bessel function $(\nu > 0)$, is the smallest positive zero of its derivative, and two-sided inequalities were obtained for $R_U(\nu)$. In this note we give a short proof of a more general result, which delineates a rather broad class of entire functions for which the same conclusion holds. Further, we refine the inequalities mentioned above to sharper ones which give asymptotic equalities for $\nu \to \infty$. The basic idea is simply that whereas the radius of univalence is quite troublesome to deal with directly, the radius of starlikeness is obtainable almost immediately from Hadamard's factorization.

Let F be a Montel compact [2] family of functions

(1)
$$f(z) = z + a_2 z^2 + \cdots,$$

regular in |z| < 1, and put $\gamma_n = \max_{f \in \mathcal{F}} |a_n| (n = 2, 3, \cdots)$. If

$$g(z) = z + b_2 z^2 + \cdots$$

is a given entire function, then the \mathfrak{F} -radius, $R_{\mathfrak{F}}$, of g(z) is

(3)
$$R_{\mathfrak{F}} = \sup \{ R \mid R^{-1}g(Rz) \in \mathfrak{F} \}$$

The inequalities $|b_n| R^{n-1} \leq \gamma_n \ (n = 2, 3, \cdots)$ which must hold for all $R \leq R_{\mathfrak{F}}$, show first that either $R_{\mathfrak{F}} < \infty$ or $g(z) \equiv z$, and second that (4) $R_{\mathfrak{F}} \leq \min_{n \leq 2} \{\gamma_n / |b_n|\}^{1/(n-1)}$

We consider the families
$$(T)$$
 of typically real functions, (U) of univalent functions, (S) of starlike univalent functions, and (C) of convex univalent functions. If $g(z)$ in (2) has real coefficients, then plainly

$$(5) R_c \leq R_s \leq R_U \leq R_T$$

since a univalent function with real coefficients is typically real.

Now let G denote the class of entire functions of either of the following two forms:

(a)
$$g(z) = z e^{\beta z} \prod_{n=1}^{\infty} (1 + z/a_n),$$

(6)

(b) $\beta \ge 0$; $0 < a_1 \le a_2 \le \cdots$; $\sum |a_n|^{-1} < \infty$, or $a(a) = a \prod^{\infty} c (1 - a^2/a^2)$

(a)
$$y(z) - z \prod_{n=1}^{n=1} (1 - z/a_n),$$

(7) (b) $0 < a_1 \le a_2 \le \cdots; \sum |a_n|^{-2} < \infty.$

Received February 8, 1961.