IMAGINARY QUADRATIC FIELDS WITH UNIQUE FACTORIZATION

Dedicated to Hans Rademacher
 on the occasion of his seventieth birthday

BY
Paul T. Bateman and Emil Grosswald ${ }^{1}$

1. Introduction

Nine imaginary quadratic fields are known in which the ring of integers has unique factorization, namely the fields with discriminants

$$
-4,-8,-3,-7,-11,-19,-43,-67,-163
$$

Heilbronn and Linfoot [3] proved that there can exist at most one more such field. Dickson [2] showed that if this tenth field actually exists, then its discriminant must be numerically greater than 1500000 , while Lehmer [5] improved this bound to 5000000000 .

It is easy to prove (see the last footnote on p. 294 of [3]) that if an imaginary quadratic field other than those with discriminants -4 and -8 has unique factorization, then its discriminant must be of the form $-p$, where p is a prime congruent to 3 modulo 4 . We shall use $h(-p)$ to denote the number of classes of ideals in the ring of integers of the imaginary quadratic field with discriminant $-p$, and $L_{p}(s)$ to denote the Dirichlet L-function formed from the unique real nonprincipal residue-character modulo p. The latter is given by the formulas

$$
\begin{equation*}
L_{p}(s)=\sum_{n=1}^{\infty}\left(\frac{-p}{n}\right) \frac{1}{n^{s}}=\sum_{n=1}^{\infty}\left(\frac{n}{p}\right) \frac{1}{n^{s}} \tag{s>0}
\end{equation*}
$$

in terms of the Kronecker and Legendre symbols respectively.
There are various results showing that if $h(-p)=1$ for some prime p greater than 163, then $L_{p}(s)$ must have a real zero rather close to 1 . For example, S. Chowla and A. Selberg [1] showed that if $h(-p)=1$ for some prime p greater than 163 , then $L_{p}\left(\frac{1}{2}\right)<0$ and so $L_{p}(s)$ has a real zero between $\frac{1}{2}$ and 1 (since $L_{p}(1)$ is positive).

A more specific result follows from an inequality of Hecke, which is proved in [4]. If $0<a \leqq 2$ and $L_{p}(s)$ has no real zeros greater than $1-a / \log p$, Hecke showed that

$$
h(-p)>\frac{a}{11000} \frac{p^{1 / 2}}{\log p}
$$

(This is trivial if $p<10^{10}$, and otherwise follows from the inequality at the

[^0]
[^0]: Received September 20, 1961. This paper resulted from editorial consideration of an earlier manuscript by the second author alone.
 ${ }^{1}$ This research was supported by the National Science Foundation and the Office of Naval Research.

