ON A THEOREM OF RADEMACHER-TURÁN

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY
P. Erdös

A set of points some of which are connected by an edge will be called a graph G. Two vertices are connected by at most one edge, and loops (i.e., edges whose endpoints coincide) will be excluded. Vertices will be denoted by α, β, \cdots, edges will be denoted by e_{1}, e_{2}, \cdots or by (α, β) where the edge (α, β) connects the vertices α and β.
$G-e_{1}-\cdots-e_{k}$ will denote the graph from which the edges e_{1}, \cdots, e_{k} have been omitted, and $G-\alpha_{1}-\cdots-\alpha_{k}$ denotes the graph from which the vertices $\alpha_{1}, \cdots, \alpha_{k}$ and all the edges emanating from them have been omitted; similarly $G+e_{1}+\cdots+e_{k}$ will denote the graph to which the edges e_{1}, \cdots, e_{k} have been added (without generating a new vertex).

The valency $v(\alpha)$ of a vertex will denote the number of edges emanating from it. $\quad G_{u}^{(v)}$ will denote a graph having v vertices and u edges. The graph $G_{\binom{(2)}{2}}^{(k . e ., ~ t h e ~ g r a p h ~ o f ~} k$ vertices any two of which are connected by an edge) will be called the complete k-gon.

A graph is called even if every circuit of it has an even number of edges.
Turán ${ }^{1}$ proved that every

$$
G_{V+1}^{(n)}, \quad V=\frac{k-2}{2(k-1)}\left(n^{2}-r^{2}\right)+\binom{r}{2}
$$

for $n=(k-1) t+r, 0 \leqq r<k-1$, contains a complete k-gon, and he determined the structure of the $G_{V}^{(n)}$,s which do not contain a complete k-gon. Thus if we put $f(2 m)=m^{2}, f(2 m+1)=m(m+1)$, a special case of Turán's theorem states that every $G_{f(n)+1}^{(n)}$ contains a triangle.

In 1941 Rademacher proved that for even n every $G_{f(n)+1}^{(n)}$ contains at least [$n / 2$] triangles and that [$n / 2$] is best possible. Rademacher's proof was not published. Later on ${ }^{2}$ I simplified Rademacher's proof and proved more generally that for $t \leqq 3, n>2 t$, every $G_{f(n)+t}^{(n)}$ contains at least $t[n / 2]$ triangles. Further I conjectured that for $t<[n / 2]$ every $G_{f(n)+t}^{(n)}$ contains at least $t[n / 2]$ triangles. It is easy to see that for $n=2 m, 2 m>4$, the conjecture is false for $t=n / 2$. To see this, consider a graph $G_{m}^{(2 m)}$ whose vertices are

[^0]
[^0]: Received March 20, 1961.
 ${ }^{1}$ P. Turán, Matematikai és Fizikai Lapok, vol. 48 (1941), pp. 436-452 (in Hungarian); see also On the theory of graphs, Colloq. Math., vol. 3 (1954), pp. 19-30.
 ${ }^{2}$ P. Erdös, Some theorems on graphs, Riveon Lematematika, vol. 9 (1955), pp. 13-17 (in Hebrew with English summary).

