ON A THEOREM OF RADEMACHER-TURÁN

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY

P. Erdös

A set of points some of which are connected by an edge will be called a graph G. Two vertices are connected by at most one edge, and loops (i.e., edges whose endpoints coincide) will be excluded. Vertices will be denoted by α, β, \cdots , edges will be denoted by e_1, e_2, \cdots or by (α, β) where the edge (α, β) connects the vertices α and β .

 $G - e_1 - \cdots - e_k$ will denote the graph from which the edges e_1, \cdots, e_k have been omitted, and $G - \alpha_1 - \cdots - \alpha_k$ denotes the graph from which the vertices $\alpha_1, \cdots, \alpha_k$ and all the edges emanating from them have been omitted; similarly $G + e_1 + \cdots + e_k$ will denote the graph to which the edges e_1, \cdots, e_k have been added (without generating a new vertex).

The valency $v(\alpha)$ of a vertex will denote the number of edges emanating from it. $G_u^{(v)}$ will denote a graph having v vertices and u edges. The graph $G_{\binom{k}{2}}^{(k)}$ (i.e., the graph of k vertices any two of which are connected by an edge) will be called the complete k-gon.

A graph is called *even* if every circuit of it has an even number of edges.

Turán¹ proved that every

$$G_{V+1}^{(n)}, \quad V = rac{k-2}{2(k-1)} \left(n^2 - r^2\right) + {r \choose 2}$$

for n = (k - 1)t + r, $0 \leq r < k - 1$, contains a complete k-gon, and he determined the structure of the $G_r^{(n)}$'s which do not contain a complete k-gon. Thus if we put $f(2m) = m^2$, f(2m + 1) = m(m + 1), a special case of Turán's theorem states that every $G_{f(n)+1}^{(n)}$ contains a triangle.

In 1941 Rademacher proved that for even n every $G_{f(n)+1}^{(n)}$ contains at least [n/2] triangles and that [n/2] is best possible. Rademacher's proof was not published. Later on² I simplified Rademacher's proof and proved more generally that for $t \leq 3$, n > 2t, every $G_{f(n)+t}^{(n)}$ contains at least t[n/2] triangles. Further I conjectured that for t < [n/2] every $G_{f(n)+t}^{(n)}$ contains at least t[n/2] triangles. It is easy to see that for n = 2m, 2m > 4, the conjecture is false for t = n/2. To see this, consider a graph $G_{m^2+m}^{(2m)}$ whose vertices are

Received March 20, 1961.

¹ P. TURÁN, Matematikai és Fizikai Lapok, vol. 48 (1941), pp. 436–452 (in Hungarian); see also On the theory of graphs, Colloq. Math., vol. 3 (1954), pp. 19–30.

² P. Endös, Some theorems on graphs, Riveon Lematematika, vol. 9 (1955), pp. 13-17 (in Hebrew with English summary).