ON COMPLEMENTARY AUTOMORPHIC FORMS AND SUPPLEMENTARY FOURIER SERIES

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY

MARVIN ISADORE KNOPP¹ AND JOSEPH LEHNER

1. Let Γ be a discontinuous group of linear transformations of the upper half-plane \mathcal{K} on itself. If F, G are automorphic forms belonging to Γ , we say that F and G are complementary forms provided FG is a differential, i.e., provided

$$FG \in \{\Gamma, -2, 1\},\$$

where by $\{\Gamma, -r, v\}$ we mean the complex vector space of automorphic forms of dimension -r belonging to Γ and the multiplier system v. If $F \in \{\Gamma, -r, v\}, G \in \{\Gamma, -r', v'\}$, then F is complementary to G if and only if²

(1)
$$r + r' = 2, \quad vv' = 1.$$

In particular, assume r < 0, μ a positive integer, and let $F_{\mu}(\tau)$ be that form in $\{\Gamma, -r, v\}$ which is regular in \mathcal{K} , has a pole of order μ at ∞ , and has the Fourier expansion

(2)
$$e(-\kappa\tau/\lambda)F_{\mu}(\tau) = t^{-\mu} + \sum_{m=0}^{\infty} a_m t^m, \qquad t = e(\tau/\lambda),$$

where

$$e(z) = e^{2\pi i z}.$$

Here λ , κ are defined in (3), (4). That is, we assume such a form exists. Petersson has defined a system of forms belonging to the complementary class { Γ , -r', v'}, namely, the Poincaré series $G(\tau, -r', v', \mu) = G_{\mu}$; cf. (8). In §3, Theorem 1, we shall exhibit a connection between F_{μ} and G: If there exists a form $F_{\mu} \in \{\Gamma, -r, v\}$ satisfying (2), then $G_{\mu-1} \equiv 0$ when $\kappa > 0$ and $G_{\mu} \equiv 0$ when $\kappa = 0$. This result is applied to the modular group in §4 (cf. Petersson [3, p. 432]).

If $F_{\mu} \in \{\Gamma, -r, v\}$, the coefficients a_m have convergent series representations given in (5). But a_m can be defined by (5) whether F_{μ} is an automorphic form or not. Write

$$a_m = a_m(\mu, -r, v)$$

to express the fact that a_m is determined by the data in parentheses even though there may not exist a form of type F_{μ} .

In §5 we restrict -r to positive integral values. We regard F_{μ} as a Fourier

Received March 3, 1961.

¹ Research supported in part by an NSF grant at the University of Wisconsin.

² It is known that v^{-1} is a multiplier system for $[\Gamma, -r']$ if v is one for $[\Gamma, -r]$.