ON THE NUMBER OF MATRICES WITH GIVEN CHARACTERISTIC POLYNOMIAL

BY
Irving Reiner ${ }^{1}$

1. Introduction

Let K be a finite field with q elements, and let K_{n} denote the ring of all $n \times n$ matrices with entries in K. Recently Fine and Herstein proved ${ }^{2}$

The number of nilpotent matrices in K_{n} is $q^{n^{2-n}}$.
We shall prove here the following generalizations.
Theorem 1. Let $f(x)$ be an irreducible polynomial in $K[x]$ of degree $d \geqq 1$. Then the number of matrices $X \in K_{n d}$ for which $f(X)$ is nilpotent is

$$
\begin{equation*}
q^{n^{2} d^{2}-n d} \cdot \frac{\left(1-q^{-1}\right)\left(1-q^{-2}\right) \cdots\left(1-q^{-n d}\right)}{\left(1-q^{-d}\right)\left(1-q^{-2 d}\right) \cdots\left(1-q^{-n d}\right)} \tag{1}
\end{equation*}
$$

Before stating the second result to be proved here, which includes the above theorem as a special case, we introduce some notation. Define

$$
\begin{equation*}
F(u, r)=\left(1-u^{-1}\right)\left(1-u^{-2}\right) \cdots\left(1-u^{-r}\right) \tag{2}
\end{equation*}
$$

where $F(u, 0)=1$. Then we have ${ }^{3}$
Theorem 2. Let $g(x) \in K[x]$ be a polynomial of degree n, and let

$$
\begin{equation*}
g(x)={f_{1}}^{n_{1}}(x) \cdots f_{k}^{n_{k}}(x) \tag{3}
\end{equation*}
$$

be its factorization in $K[x]$ into powers of distinct irreducible polynomials $f_{1}(x), \cdots, f_{k}(x)$. Set

$$
d_{i}=\text { degree of } f_{i}(x), \quad 1 \leqq i \leqq k
$$

Then the number of matrices $X \in K_{n}$ with characteristic polynomial $g(x)$ is

$$
\begin{equation*}
q^{n^{2}-n} \cdot \frac{F(q, n)}{\prod_{i=1}^{k} F\left(q^{d_{i}}, n_{i}\right)} . \tag{4}
\end{equation*}
$$

The proofs of these theorems do not require a knowledge of the FineHerstein paper, except for the following combinatorial lemma which they establish and which we state without proof.

[^0]
[^0]: Received July 2, 1960.
 ${ }^{1}$ This research was supported by a contract with the Office of Naval Research.
 ${ }^{2}$ N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., vol. 2 (1958), pp. 499-504.
 ${ }^{3}$ Another proof of Theorems 1 and 2 is given by M. Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., vol. 5 (1961), pp. 330333.

