INDECOMPOSABLE REPRESENTATIONS

BY
A. Heller and I. Reiner ${ }^{1}$
\section*{1. Introduction}

Let Λ be a finite-dimensional algebra over a field K. By a Λ-module we shall mean always a finitely generated left Λ-module on which the unity element of Λ acts as identity operator. It is well known that the Krull-Schmidt theorem holds for Λ-modules: each module is a direct sum of indecomposable Λ-modules, and these summands are uniquely determined up to order of occurrence and Λ-isomorphism. Thus the problem of classifying Λ-modules is reduced to that of finding the isomorphism classes of indecomposable Λ modules. We denote the set of these by $M(\Lambda)$.

A central problem in the theory of group representations is that of determining a set of representatives of $M(\Lambda)$ for the special case where $\Lambda=K G$, the group algebra of a finite group G over the field K. A definitive answer can be given when the characteristic of K does not divide the group order [$G: 1$]; in this case $K G$ is semisimple, all indecomposable modules over $K G$ are irreducible, and a full set of non-isomorphic minimal left ideals of $K G$ constitute a set of representatives of $M(K G)$. For the case where the characteristic of K is $p(p \neq 0)$, Higman [6] has proved the following remarkable result: $M(K G)$ is finite if and only if the p-Sylow subgroups of G are cyclic. If such is the case, Higman obtained an upper bound on the number of elements of $M(K G)$. A best possible upper bound was later obtained by Kasch, Kupisch, and Kneser [5].

We shall attempt to elucidate Higman's theorem by considering in detail the special case where G is an abelian p-group, and K a field of characteristic p. We shall exhibit some new classes of indecomposable modules. However we shall show that the problem of computing $M(K G)$, in case G is not cyclic, is at least as difficult as a classical unsolved problem in matrix theory.

It should be pointed out that the question of determining all representations of a p-group in a field of characteristic p has been extensively treated by Brahana [1, 2, 3] from a somewhat different viewpoint. There is consequently a certain amount of overlapping between his results and ours, but we have thought it best to make this paper completely self-contained.

2. C -algebras

Inasmuch as we shall need to consider, together with modules over an algebra Λ, also modules over sub- and quotient-algebras of Λ, we cannot re-

[^0]
[^0]: Received June 10, 1960.
 ${ }^{1}$ Research of the first author was supported in part by the A. P. Sloan Foundation. Research of the second author was supported in part by a research contract with the Office of Naval Research.

