HAUSDORFF DIMENSION IN PROBABILITY THEORY II

BY
Patrick Billingsley

1. Introduction and definitions

Let $\left\{x_{1}, x_{2}, \cdots\right\}$ be a stochastic process, with finite or countable state space σ, defined on a probability measure space ($\Omega, \mathfrak{B}, \mu$). In [1] a Hausdorff dimension $\operatorname{dim}_{\mu} M$ was defined for each set $M \subset \Omega$, in the following way. ${ }^{1}$ A cylinder (of rank n) is defined to be a set of the form $\left\{\omega: x_{k}(\omega)=a_{k}\right.$, $k=1,2, \cdots, n\}$, where $a_{k} \in \sigma$. If $M \subset \Omega$ and $\rho>0$, a μ - ρ-covering of M is a finite or countable collection $\left\{v_{i}\right\}$ of cylinders such that $M \subset \bigcup_{i} v_{i}$ and $\mu\left(v_{i}\right)<\rho$ for each i. If $\rho, \alpha>0$, put $L_{\mu}(M, \alpha, \rho)=\inf \sum_{i} \mu\left(v_{i}\right)^{\alpha}$, where the infimum extends over all $\mu-\rho$-coverings $\left\{v_{i}\right\}$ of M, and let $L_{\mu}(M, \alpha)=$ $\lim _{\rho \rightarrow 0} L_{\mu}(M, \alpha, \rho)$. If $L_{\mu}(M, \alpha)<\infty$, then $L_{\mu}(M, \alpha+\varepsilon)=0$ for all $\varepsilon>0$; hence we can define

$$
\begin{equation*}
\operatorname{dim}_{\mu} M=\sup \left\{\alpha: L_{\mu}(M, \alpha)=\infty\right\}=\inf \left\{\alpha: L_{\mu}(M, \alpha)=0\right\} \tag{1.1}
\end{equation*}
$$

It was shown in [1] that if Ω is the unit interval (0,1], if μ is Lebesgue measure, and if $\sum_{n=1}^{\infty} x_{n}(\omega) s^{-n}$ is, for each ω, the nonterminating base s expansion of ω, then this definition reduces to the classical one due to Hausdorff.

The dimension of M depends both on the measure μ and the process $\left\{x_{n}\right\}$. The dependence upon $\left\{x_{n}\right\}$ is not exhibited in the notation $\operatorname{dim}_{\mu} M$, since $\left\{x_{n}\right\}$ will remain fixed throughout the discussion. However, we will consider several measures μ simultaneously, and the main purpose of the paper is to investigate how $\operatorname{dim}_{\mu} M$ varies as μ varies. For $\omega \in \Omega$ and $n=1,2, \cdots$, put

$$
u_{n}(\omega)=\left\{\omega^{\prime}: x_{k}\left(\omega^{\prime}\right)=x_{k}(\omega), k=1,2, \cdots, n\right\} .
$$

In other words, $u_{n}(\omega)$ is that cylinder of rank n which contains ω. In §2 we prove several refinements of the fact that if μ and ν are probability measures on B, and if

$$
\begin{equation*}
M \subset\left\{\omega: \lim _{n \rightarrow \infty} \frac{\lg \nu\left(u_{n}(\omega)\right)}{\lg \mu\left(u_{n}(\omega)\right)}=\delta\right\} \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{dim}_{\mu} M=\delta \operatorname{dim}_{\nu} M \tag{1.3}
\end{equation*}
$$

In §3, the results of $\S 2$ are used to extend and simplify some of the theorems of [1]. The essential idea here is to compute $\operatorname{dim}_{\mu} M$ for certain sets M by constructing a measure ν such that (1.2) holds and such that $\operatorname{dim}_{\nu} M=1$. It then follows from (1.3) that $\operatorname{dim}_{\mu} M=\delta$. Finally, $\S 4$ contains some re-

[^0]
[^0]: Received May 18, 1960.
 ${ }^{1}$ In [1] the state space σ was assumed to be finite, but the definition applies to a countable σ as well.

