ONE-DIMENSIONAL TOPOLOGICAL SEMILATTICES

 $\mathbf{B}\mathbf{Y}$

L. W. ANDERSON AND L. E. WARD, JR.¹

1. Introduction

In [5] A. D. Wallace proved that a compact, connected mob with zero and unit has trivial cohomology groups for n > 0. It is implicit in this result that if such a mob is one-dimensional² and locally connected, then it is a tree. For, if X is a continuum, dim X = 1, and $H^1(X) = 0$, then X is hereditarily unicoherent; thus, if X is locally connected, it is a tree [8]. In the main theorem of this note we modify Wallace's result so as to eliminate the necessity of hypothesizing a unit. Specifically, we prove

THEOREM. A compact, connected, locally connected, one-dimensional, idempotent, commutative mob is a tree.

2. Preliminaries

A topological semilattice (= TSL) is an idempotent commutative mob. A TSL can be endowed with a natural partial ordering by letting $x \leq y$ if xy = x. Thus xy = g.l.b.(x, y), denoted hereafter by $x \wedge y$, and this partial ordering is continuous in the sense that its graph (= { $(x, y): x \leq y$ }) is closed. It is easy to see that a compact TSL is \wedge -complete and therefore has a zero. Also a \wedge -complete TSL with unit is an algebraic lattice (but not necessarily topological).

A tree is a continuum (= compact connected Hausdorff space) in which every two points are separated by a third point. A tree admits a partial ordering as follows: Select a point x_0 , and define $x \leq y$ if and only if $x = x_0$, or x = y, or x separates x_0 and y. This partial ordering is called the *cutpoint* ordering of a tree [6]. We recall [7] that a compact Hausdorff space X is a tree if, and only if, X admits a partial ordering, \leq , such that for each $a, b \in X$

(i) L(a) and M(a) are closed,³

(ii) if a < b, then there exists $c \in X$ with a < c < b,

(*) (iii) $L(a) \cap L(b)$ is a nonvoid chain,

(iv) $M(a) - \{a\}$ is open.

3. Proof of the theorem

Throughout this section, S will denote a compact, connected, locally con-

³ In a partially ordered set we write $L(a) = \{x : x \leq a\}$ and $M(a) = \{x : a \leq x\}$.

Received July 31, 1959; received in revised form July 5, 1960.

¹ This research was supported in part by the Air Force Office of Scientific Research.

² The dimension function employed throughout this note is *codimension* as expounded by Haskell Cohen [3]. For a compact Hausdorff space, the codimension (with the integers as coefficient group) and the covering dimension agree.