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1. Introduction

In [5] A. D. Wallace proved that a compact, connected mob with zero nd
unit has trivial cohomology groups for n > 0. It is implicit in this result

one-dmensonal and locally connected, then it is athat if such a mob is
tree. For, if X is a continuum, dim X 1, and H(X) 0, then X is heredi-
tarily unicoherent; thus, if X is locally connected, it is a tree [8]. In the main
theorem of this note we modify Walluce’s result so as to eliminate the neces-
sity of hypothesizing a unit. Specifically, we prove

THEOREM. A compact, connected, locally connected, one-dimensional,
idempotent, commutative mob is a tree.

2. Preliminaries

A topological semilattice (= TSL) is an idempotent commutative mob.
A TSL can be endowed with a natural partial ordering by letting x -<_ y if
xy x. Thus xy g.l.b. (x, y), denoted hereafter by x ^ y, and this
partial ordering is continuous in the sense that its graph (x, y)" x _-< Yl
is closed. It is easy to see that compact TSL is ^-complete and therefore
has a zero. Also ^-complete TSL with unit is an algebraic lattice (but
not necessarily topological).
A tree is a continuum (= compact connected Hausdorff space) in which

every two points are separated by third point. A tree admits a partial
ordering as follows" Select a point x0, nd define x _-< y if and only if x x0,

or x y, or x separates x0 nd y. This partial ordering is called the cutpoint
ordering of a tree [6]. We recall [7] thut a compact Huusdorff space X is a
tree if, and only if, X admits a prtil ordering, -_<, such that for each a, b e X

(i) L(a) and M(a) ureclosed,
(ii) ira b, thenthereexistsceXwitha c b,

(*) (iii) L(a) L(b) is a nonvoid chain,
(iv) M(a) {al is open.

3. Proof of the theorem

Throughout this section, S will denote compact, connected, locally con-
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The dimension function employed throughout this note is codimension as expounded

by Haskell Cohen [3]. For compact ttausdorff space, the codimension (with the integers
as coefficient group) and the covering dimension agree.

In a partially ordered set we write L(a) {x’x <-_ a} andM(a) {x" a -< x}.
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