AVERAGE ORDER OF ARITHMETIC FUNCTIONS

BY
J. P. Tull

1. Introduction and an elementary lemma

The author has given a theorem [8] by which it is possible to find an asymptotic formula for the summatory function of the convolution of two arithmetic functions if such a formula is known for these functions. By the convolution of arithmetic functions a and b we mean

$$
(a * b)(n)=\sum_{d \mid n} a(d) b(n / d)
$$

If $A(x)=\sum_{n<x} a(n)$ and $B(x)=\sum_{n<x} b(n)$, we have used the term Stieltjes resultant for the function

$$
C(x)=\sum_{n<x}(a * b)(n)
$$

due to the fact that for almost all x

$$
C(x)=\int_{1}^{x} A(x / u) d B(u)
$$

However, the term convolution is just as natural, and so we have two convolutions, $*$ and \times, where for $x \geqq 1$

$$
(A \times B)(x)=\sum_{n<x}(a * b)(n)
$$

In the present paper we shall apply the theorem of [8] to some interesting arithmetic functions and then apply the following elementary lemma to some of these results and also to some known nonelementary asymptotic formulae to find estimates for sums $\sum_{n<x} a(n) / n$.

Lemma. Given an arithmetic function a, if for $x \geqq 1$

$$
A(x)=\sum_{n<x} a(n)=R(x)+O\left(x^{\alpha} L(x)\right)
$$

where R is continuous on $[1, \infty), \alpha$ is real, L slowly oscillating (see below), then

$$
\sum_{n<x} a(n) / n=\int_{1}^{x} R(t) t^{-2} d t+R(x) x^{-1}+c+O\left(x^{\alpha-1} L_{1}(x)\right)
$$

where $c=0$ if $\alpha \geqq 1$,

$$
c=\int_{1}^{\infty} t^{-2}(A(t)-R(t)) d t
$$

if $\alpha<1, L_{1}(x)=L(x)$ if $\alpha \neq 1$, and

$$
L_{1}(x)=\int_{1}^{x} t^{-1} L(t) d t
$$

if $\alpha=1$.
Received October 26, 1959.

