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1. Introduction

Let X be a compact metric space with metric p, and let T be a homeo-
morphism of X onto itself. The pir (X, T) will be called a compact system.

In this paper we shall be concerned with compact systems which are mean-
L-stable, as defined in Section 4. The definition of mean-L-stable systems
is due to Fomin [3]. Mean-L-stable systems were also discussed briefly by
Oxtoby in [7]. The theorems he obtained will be quoted at appropriate
places in this paper.
We adopt the following notations. If E is a set, xE denotes its charac-

teristic function, and E’ denotes its complement (when the containing space
is understood.) If E is a subset of X, its closure is denoted by

If E is a set of integers, let
k(E) (2]c - 1)-1=_ xE(j).

The upper density of E, *(E), is defined by

*(E) lim sup_. (E),

and the lower density of E, .(E), is defined by

ti.(E) lim inf i(E).

If .(E) *(E), their common value is called the density of E, and is de-
noted by i(E).

2. Measure theoretic preliminaries. The theory of
Kryloff and BogolioubofF

A Borel measure on X is a finite measure on the algebra of all Borel sub-
sets of X. A Borel measure is normalized if (X) 1. An invariant
Borel measure on (X, T) is a Borel measure on X such that if E is a Borel
subset of X, then (E) (ET). It is known [7, (2.1)] that any compact
system admits at least one normalized invariant Borel measure. A Borel
subset E on X is said to have invariant measure zero (invariant measure one)
provided (E) 0 ((E) 1) for every normalized invariant Borel measure
on (X, T).
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