PID'S WITH SPECIFIED RESIDUE FIELDS

RAYMOND C. HEITMANN

When can a collection \mathfrak{F} of fields be the collection of all residue fields of some principal ideal domain D (counting multiplicity)? We restrict our attention to the case that D has characteristic 0, since then D can have residue fields of all characteristics.

One obvious restriction is (CP): For each characteristic $p \neq 0$, \mathfrak{F} contains only finitely many fields of that characteristic (because the factorization of $p = p \circ 1_D$ in *D* involves only finitely many primes of *D*, which are all of those producing residue fields of characteristic *p*). There is no corresponding restriction for characteristic 0 (e.g., $D = \mathbf{Q}[x]$). For countable *D*, we show that (CP) is the only restriction.

THEOREM A. Let \mathfrak{F} be any countable collection of countable fields satisfying (CP). Then there is a countable PID of characteristic zero whose collection of residue fields is precisely \mathfrak{F} .

One can be more ambitious by trying to find a Dedekind domain with prescribed class group and residue fields. A partial result in this direction forms the second main result of this paper.

THEOREM B. Let G be a countable abelian torsion group. Then there is a countable Dedekind domain of characteristic 0 whose class group is G, and whose residue fields are those of the integers (i.e., one copy of $\mathbf{Z}/p\mathbf{Z}$ for each prime p).

We now outline the proof of Theorem A. It utilizes the fact that if F_0 is the prime field of a countable field F, then there is a sequence of subfields $F_0 \subset F_1 \subset F_2 \subset \cdots$ whose union is F and which has the property that F_n is either a simple algebraic or a simple transcendental extension of F_{n-1} . The construction proceeds in three stages.

The Initial Step. Construct a PID whose residue fields are one copy of each $\mathbf{Z}/p\mathbf{Z}$ and infinitely many copies of \mathbf{Q} . Thus we obtain all the necessary prime fields—except for (finite) multiplicity. (Any unwanted prime field may be removed via localization.)

The Induction Step. Given a PID D with quotient field K, construct a PID \tilde{D} between D[x] and K(x) such that the residue fields of \tilde{D} are the same as those of D except that one of the residue fields of D has been altered by being replaced by

(a) two copies of itself; or

Received November 12, 1973. This paper is based on the author's dissertation at the University of Wisconsin, written under Professor Lawrence Levy, whose substantial help is grate-fully acknowledged.