Journal of Differential Geometry

Symmetries of surfaces of constant width

Jay P. Fillmore

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 3, Number 1-2 (1969), 103-110.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.jdg/1214428822

Mathematical Reviews number (MathSciNet)
MR0247594

Zentralblatt MATH identifier
0181.25202

Subjects
Primary: 53.75

Citation

Fillmore, Jay P. Symmetries of surfaces of constant width. J. Differential Geom. 3 (1969), no. 1-2, 103--110. http://projecteuclid.org/euclid.jdg/1214428822.


Export citation

References

  • [1] W. Blaschke, Vorlesungen uber Differentialgeometrie, Vol. I, 2nd ed., Springer, Berlin, 1924.
  • [2] A. Erdelyi (Editor), Higher transcendental functions, Vols. 1 and 2, McGraw-Hill, New York, 1953.
  • [3] W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika 14 (1967) 1-13.
  • [4] D. Laugwitz, Differential and Riemannian geometry. Academic Press, New York, 1965.
  • [5] G. Polya and B. Meyer, Sur les symetes des functions spheriques de Laplace, C. R. Acad. Sci. Paris 228 (1950) 28-30, 1083-1084.
  • [6] E. T. Whitaker and G. N. Watson, A course of modern analysis, Cambridge University Press, Cambridge, 1927.
  • [7] I. M. Yaglom and V. G. Boltyanski, Convex figures, Holt, Rinehart and Winston, New York, 1949.
  • [8] H. Zassenhaus, The theory of groups, Chelsea New York, 1949.